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The electron repulsion integrals arising in LCAO-KO theory are approximated by replace- 
ment of the product of two orbitals on different centers by linear combinations of one-center 
products. The approximation differs from those previously proposed in that the coefficients 
of the various terms are determined by requiring agreement for certain integrals, and in the 
emphasis of the role of symmetry in selecting the one-center products. For two-center integrals, 
the new approximation is significantly better than older approximate methods, l~easons are 
given for expecting this improvement to extend also to multi-center integrals. 

Es wird ein Verfahren zur n~herungsweisen Berechnung yon Elektronenwechselwirkungs- 
integralen dcr LCAO-MO-Theorie beschrieben, bei welchem das Produkt zweier Zustands- 
funktionen an verschiedenen Zentren durch eine Linearkombination yon Produkten am 
gleichen Zentrum ersetzt wird. Der Unterschied zu ~hnlichen Ans~tzen liegt in der Justierung 
der Koeffizienten. Fiir Zweizentrenintegrale liefert die hier vorgeschlagene Methode bedeutend 
bessere Ergebnisse als das Mulliken-Verfahren. 

Les int6grales de r6pulsion 6lectroniques intervenant dans la th6orie LCAO MO sont 
calcu]6es d'une mani6re approch6e en remplagant le produit de deux orbitales sur des centres 
diff6rents par des combinaisons ]in6aires de produits ~ un centre. Cette approximation diff6re 
de celles propos6es auparavant par la d6termination des coefficients des diff6rents termes au 
moyen de rajustement de certaines int6grales et par rimportance du rSle de la sym6~rie dans 
le choix des produits monocentriques. Cette nouvelle approximation est bien meilleure que los 
anciennes en ce qui eoncerne les int6grales bi-centriques. Nous donnons des raisons d'esp6rer 
que cette am61ioration s'6tendra aux int6grales polycentriques. 

Introduction 
The t h e o r y  of  molecu la r  o rb i ta l s  fo rmed b y  l inear  combina t ion  of  a tomic  

orbi ta ls  (LCAO-MO theory)  has  en joyed  a considerable  success in corre la t ing  pro-  
per t ies  of m a n y  medium-s ized  molecules,  pa r t i c u l a r l y  when used wi th in  groups  of  
fa i r ly  s imilar  sys tems  such as the  a l t e rnan t  hydrocarbons .  On the  o the r  hand ,  
when LCAO-MO t h e o r y  is app l ied  to  sys tems  possessing less s imilar i t ies ,  for  
example  organic molecules conta in ing  he tero  a toms,  far  less sa t i s fac to ry  resul ts  
are ob ta ined .  U n d o u b t e d l y ,  th is  behav ior  is due to  the  fact  t h a t  the  a p p r o x i m a -  
t ions of  the  t h e o r y  have  a more  cons is ten t  effect when appl ied  in  closely corres- 
ponding  c i rcumstances .  However ,  the  large n u m b e r  of  r e l a t ive ly  dras t ic  m a t h e -  
ma t i c a l  app rox ima t ions  n o r m a l l y  i n t roduced  make  i t  b y  no means  clear  whe the r  
the  difficulties are inheren t  in the  LCAO molecu la r  o rb i ta l  t heo ry  or whe ther  t h e y  
can be r emoved  b y  pure ly  m a t h e m a t i c a l  ref inements .  The presen t  p a p e r  seeks to  
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investigate this question by examining the practicality of a set of approximations 
alternative to those which have received widest study. 

The mathematical approximations of molecular orbital theory arise because an 
extremely large number of molecular integrals enter the calculations, and these 
integrals have proved difficult to evaluate. There have been two main approaches 
to this problem, the simpler being exemphfied by the Hfickel theory [8] and its 
extensions [7]. This approach avoids explicit consideration of the antisymmetry 
conditions, and approximates the electron-electron and electron-nuclear inter- 
actions by simple empirical forms. I t  is doubtful whether this approach is suffi- 
ciently detailed to yield good results in the most general situations. 

The second approach has been to use a properly antisymmetrized electronic 
wave function, but to limit the size of the problem in other ways. A normal 
procedure is to partition the electrons into two groups, only one of which is 
explicitly considered [11, 12]. The explicitly considered electrons are normally 
chosen from those involved in chemical bonding. Often, as in the usual ~ electron 
theory [15, 16], not even all of the valence electrons are included. The remaining 
electrons and the nuclei are together considered as a "core" whose interaction with 
the explicitly considered electrons is estimated semi-empirically. A partitioning 
therefore reduces drastically the number of molecular integrals to be evaluated, 
as the only integrals remaining are those involving the explicitly included electrons. 
Normally, still further approximations are introduced in the evaluation of the 
integrals which remain, by the use of simplified numerical formulas or semi- 
empirical methods. Frequently integrals involving three or four centers are neg- 
lected, as are sometimes also the two-center integrals of hybrid or exchange type. 

The approximations outlined in the preceding paragraph could be nearly 
entirely removed if the integrals could be evaluated much more rapidly. We 
accordingly consider an alternative approach to LCAO molecular orbital theory 
in which we introduce an integral approximation that  is simple enough to enable 
explicit inclusion of nearly all electrons. Such an integral approximation should, 
optimally, have sufficient accuracy that  errors thereby introduced would be com- 
parable to those inherent in the LCAO-MO theory itselfi Moreover, the inclusion 
of all integrals should produce a molecular orbital theory which could have the 
capability of yielding information on molecular geometries, ~ -- ~ transitions, and 
other quantities which it is difficult to discuss in the presence of a "core" ap- 
proximation. 

The integral approximation methods which have thus far proved to be useful 
all depend upon the replacement of a two-center charge distribution by one or 
more suitably chosen single-center distributions. In the method of Sx_nx~ [18], 
a two-center orbital product is replaced by a product of two similar orbitals at 
the midpoint of the line segment connecting the centers. V~o~A~r [19] has 
modified SKnA~'S approximation for asymmetric charge distributions by optimally 
locating the single-center orbital product. Alternatively, MASOS and tIn~sCH- 
S~LD~ [13] examined more elaborate expressions and multipole expansions about 
the midpoint. MuLL~r162 [14] introduced the approximation of a two-center orbital 
product by a simple average of two single-center distributions located at the two 
centers involved. L6wnx~ [10] proposed that  the Mulliken approximation be modi- 
fied by weighting the relative contributions of the single-center distributions 
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so as to give the approximate charge distribution the correct dipole moment. 
HVZr~AGA [9] suggested a combination of the Mulliken and Sklar approximations 
in which a simple average is taken of single-center charge distributions at both 
centers and at the midpoint of the line segment connecting them. These integral 
approximation methods can all be construed as involving leading terms in infinite 
series expansions of a two-center charge density. This point of view was explicitly 
developed for the 5{ulliken approximation by RVnI)~NB~G [17], who showed that  
such arguments could be used to justify the appearance of the overlap integral as 
coefficient. Recently, Ci~nK [1, 2] critically compared the various integral ap- 
proximation methods and took the next logical step toward an improved method. 
(Ji~nK's procedure was to represent a two-center charge distribution as a lhlear 
combination of two single-center distributions, assigning both their locations and 
their relative weights so as to make the lowest order multipole moments correct. 
In  this way he was able to achieve agreement through the octupole moment. 

In  the present paper we examine an integral approximation which, in common 
with those discussed above, is based upon the representation of a two-center 
charge distribution as a truncated expansion in one-center distributions. However, 
in contrast to the earlier approaches, the coefficients of the various one-center 
terms will be determined by requiring the approximate charge distributions to 
yield correct v~lues for certain integrals. This criterion results in the assignment 
of coefficients which are more nearly optimum for the purposes for which they are 
to be used, with the result tha t  relatively good integral values are obtained. In 
selecting terms for the truncated expansions, it is found that  symmetry is con- 
siderably more important  than detailed functional form, as errors in form are 
largely compensated by  the procedure for determi~fing the coefficients, whereas 
terms of different symmetry behave qualitatively too differently to compensate 
each other. Accordingly, we consider expansions involving the leading terms of the 
most important  symmetries. The results presented here are limited to two-center 
electron repulsion integrals, and to orbitals of principal quantum numbers I and 2. 
Further  study to remove these limitations is in progress. 

Integral Approximation 
We consider Slater-type orbitals centered at the two points A and B. We use 

parallel axial systems for the two centers, ~dth the positive z axis of both systems 
along the ray from A through B. We use normalized is, 2s, and 2p orbitals of 
complex type, denoting is orbitals at A and B by  ha and hb, 2s orbitals by  sa and s0, 
2p orbitals with m = 0 by ~a and ao, 2p orbitals with m = + i by ~a and ;to, 
and 2p orbitals with m = -- I by ~r'~ and ~ .  Electron repulsion integrals are 
indicated in charge distribution notation, so that,  for example, [ha sb [ ~b ~0] means 

h*a (rl) so (rl) I r2 --  rl  !-1 a~ (r2) (To (r2) dv 1 dv~. 
Our basic premise is tha t  each orbital about one center can be expanded in a 

series about the other center using at most one term of each atomic symmetry. 
For simplicity, we use the is orbital as the term of s symmetry, and for p symmetry 
we use the three 2p orbitals. Thus, 

h a ~  V lh~q-C~ab;  ho '~  c l h a - c  2(~a; s a ~ c  a h b q - c  4aO; 
Sb ~- C3 ha --  c4 (~a ; (~a ~- c~ he q- c 6 (;o ; (~b ~ --  C~ ha q- c 6 aa ; 

v ! ! I 

9"Ca "~ C7 7gb " ~ ~ O  ~ ,  CT 2"ga ~ 2"~a "~ (~7 ~ b  ~ 9"~b ~ ,  C7 Y'g a. 
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Table 1. Exact and approximate integrals i~wolving symmetrical two-center charge distributions 

R = 2; 6~ = d~v = 2.00 R = 2; d~ = d~ = 1.67 

integral this Mull. this Mull. 
exact work appr exaeg work appr 

hybrid 

[ha ha h, h~] 
[ha h~ s~ 8~] 
[h~ h~ a~ ao] 
[h, ha z~ ~b] 
[h~ 8~ h~ hb] 

[h~ 8a a~ a~] 
[ha s~ ~ ~ ]  
[h~ a~ h~ h~] 
[h~a~ s~ sb] 
[h~ a~ ~ ab] 

[8~ s~ h~ h0] 

[8~ s~ a~ ab] 
[so 8o ~a n~] 
[s~ a~ h~ hb] 
[s~ a~ 8~ sb] 
[8~ aa a~ a~] 
[8~ a~ ~ ~ ]  
[O'a aa ha hb] 
[a .a~ s,  sb] 
[aa a~ aa ao] 

[ ~  ~ h~ hb] 

exchange 

[h~ h0 h~ h~] 

[8~ 8~ 8~ 8~] 
[a~ ab h~ h~] 
[a~ab s~ sb] 
[a~ a~ a~ab] 
[ z ~ b  h~ h~] 

0.308 0.308* 0.308 0.308 0.308* 0.308 
0.265 0.265* 0.254 0.312 0.312" 0.299 

-0.221 -0.221" -0.183 -0 . t77  -0.177" -0.128 
0.156 0.156" 0.t58 0.203 0.203* 0.205 
0.310 0.310 0.310 0.302 0.30i 0.301 
0.269 0.268 0.257 0.307 0.306 0.294 

-0.226 -0.225 -0.185 -0.174 -0.173 -0.125 
0.157 0.157 0.159 0.200 0.199 0.201 
0.045 0.045* 0.031 0.046 0.046* 0.032 
0.051 0.05t* 0.027 0.052 0.052* 0.032 

-0.089 -0.089* -0.021 -0 .08t  -0.081" -0.014 
0.028 0.016 0.016 0.033 0.021 0.022 
0.327 0.328 0.327 0.307 0.305 0.305 
0.284 0.284 0.271 0.312 0.311 0.299 

-0.240 -0.240 -0.196 -0.177 -0.176 -0.127 
0A 66 0.t 66 0.t68 0.204 0.203 0.205 
0.047 0.047 0.032 0.048 0.048 0.034 
0.055 0.055 0.028 0.054 0.054 0.033 

-0.097 -0.097 -0.022 -0.084 -0.084 -0.014 
0.030 0.017 0.017 0.035 0.022 0.023 
0.336 0.338 0.336 0.317 0.316 0.316 
0.296 0.294 0.280 0.322 0.322 0.308 

-0.264 -0.260 -0.212 -0.193 -0.188 -0 . t37  
0.t68 0.167 0.t69 0.205 0.205 0.207 
0.323 0.323 0.322 0.302 0.300 0.300 
0.279 0.279 0.267 0.307 0.306 0.294 

-0.228 -0.230 -0.188 -0.168 -0.170 -0.122 
0A 65 0.165 0.167 0.203 0.202 0.204 
0.014 0.014 0.000 0.019 0.017 0.000 

0.184 0.183 0.t8t  0.184 0.183 0.181 
0.160 0.160 0.t49 0.188 0.187 0.t75 
0.143 0.142 0.124 0.193 0.19t 0.171 

-0.141 -0.141 -0 . t07  -0.116 -0.116 -0.075 
-0.134 -0.133 -0.089 -0.123 -0.123 -0.073 

0.157 0.153 0.068 0.121 0.118 0.033 
0.095 0.09t 0.092 0.123 0.t19 0.120 
0.083 0.079 0.077 0.126 0.121 0.1t7 

-0.075 -0.065 -0.054 -0.077 -0.068 -0.049 
0.050 0.047 0.048 0.085 0.080 0.081 
0.006 0.004 0.000 0.009 0.007 0.000 

T h e  coeff ic ients  in  t he se  express ions  are  to  be  d e t e r m i n e d  i n d i v i d u a l l y  for  each  

cha rge  d i s t r i bu t ion .  
W e  b e g i n  b y  cons ide r ing  s y m m e t r i c a l  cha rge  d i s t r ibu t ions .  B y  d i rec t  sub-  

s t i t u t i o n  o f  t h e  r e l a t i onsh ips  in  t h e  p r e c e d i n g  p a r a g r a p h ,  we f ind for  e x a m p l e  t h a t  

ha hb can  be  r e p r e s e n t e d  as ~1 hb h~ + c 2 ab hb, or  e q u i v a l e n t l y  as c 1 he ha -- c2 ha aa. 
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Asterisks indicate integrals used to determine our approximation formulas. "Mull. appr"  indic- 
ates the  Mulliken approximation as in Eq. (10). Uni ts  of R are bohrs;  integrals are in hartrees.  

R = 3; 62~ = ~2p = 1.67 R = 5 ;  ( ~  = (~2p = 1 . 6 7  R = 8; 8~s = (~p = 1.67 

this  Mull. th is  Mull. this  Mull. 
exac~ work appr  exact work appr  exact  work appr  

0.161 0.161" 0.165 0.0350 0.0350* 0.0398 0.0027 0.0027* 0.0027 
0.145 0.145" 0.14I 0.0187 0.0187" 0.0204 0.0004 0.0004* 0.0006 

-0 .170 -0 .170"  -0 .153 -0 .0339 -0.0339* -0.0367 -0 .0010 -0 .0010"  -0 .0014 
0.072 0.072* 0.075 0.0061 0.0061" 0.0073 0.000t 0.0001" 0.0001 
0.158 0.157 0.161 0.0344 0.0340 0.0387 0.0027 0.0027 0.0037 
0.143 0.142 0.138 0.0185 0.0183 0.0200 0.0004 0.0004 0.0006 

-0 .168 -0 .168 -0 .150 -0 .0335 -0 .0332 -0.0359 -0 .0010 -0 .0010 -0 .0014 
0.071 0.070 0.074 0.0060 0.0059 0.0071 0.0001 0.0001 0.0001 
0.027 0.027* 0.013 0.0060 0.0060* 0.0016 0.0004 0.0004* 0.0001 
0.029 0.029* 0.012 0.0040 0.0040* 0.0009 0.0001 0.0001" 0.0000 

-0 .059 -0.059* -0 .015 -0 .0094 -0.0094* -0 .0017 -0 .0002 -0.0002* -0 .0000 
0.013 0.006 0.006 0.0011 0.0002 0.0003 0.0000 0.0000 0.0000 
0.t61 0.160 0.163 0.0350 0.0344 0.0392 0.0027 0.0027 0.0037 
0.146 0.144 0. t40 0.0188 0.0185 0.0203 0.0005 0.0004 0.0006 

- 0 . t 7 2  -0.17i -0 .152 -0 .0342 -0.0337 -0 .0365 -0 .0010 -0 .0010 -0 .0014 
0.072 0.071 0.075 0.0061 0.0060 0.0072 0.0001 0.0001 0.0001 
0.028 0.028 0.014 0.0063 0.0062 0.0017 0.0005 0.0005 0.0001 
0.031 0.031 0.0t2 0.0042 0.0042 0.0009 0.0001 0.0001 0.0000 

-0.061 -0.061 -0 .015 -0 .0098 -0 .0097 -0.0017 -0 .0002 -0 .0002 -0 .0000 
0.014 0.006 0.006 0.0012 0.0002 0.0003 0.0000 0.0000 0.0000 
0.167 0.164 0.167 0.0363 0.0349 0.0396 0.0028 0.0027 0.0038 
0.153 0.150 0.144 0.0199 0.0188 0.0205 0.0005 0.0004 0.0006 

-0.189 -0 .187 -0 .165 -0.0371 -0 .0362 -0 .0390 -0.0011 -0.0011 -0 .0015 
0.074 0.071 0.075 0.0063 0.0059 0.0071 0.0001 0.0001 0.0001 
0.158 0.156 0.160 0.0344 0.0342 0.0390 0.0027 0.0027 0.0037 
0.142 0.142 0.138 0.0183 0.0184 0.0202 0.0004 0.0004 0.0006 

- 0 . t 6 3  -0 .163 - 0 . t 4 6  -0 .0327 -0 .0325 -0.0352 -0 .0010 -0 .0010 -0 .0013 
0.072 0.071 0.075 0.0060 0.0061 0.0073 0.0001 0.0001 0.0001 
0.005 0.006 0.000 0.0003 0.0005 0.O000 O . 0 O 0 0  0.0000 0.0000 

0.059 0.057 0.057 0.0037 0.0033 0.0038 0.0900 0.0000 0.0000 
0.054 0.053 0.049 0.0021 0.0018 0.0020 0.00O0 0.0000 0.0000 
0.050 0.049 0.042 0.0012 0.0010 0.0010 0.0000 0.0000 0.0000 

-0 .068 -0 .066 -0 .053 -0.0041 -0 .0034 -0 .0035 -0 .0000 -0 .0000 -0 .0000 
-0 .065 -0 .063 -0 .046 -0 .0024 -0 .0019 -0 .0018 -0 .0000 -0 .0000 -0 .0000 

0.095 0.091 0.053 0.0049 0.0039 0.0035 0.0000 O.0000 0.0000 
0.027 0.024 0.026 0.0007 0.0005 0.0007 0.0000 0.0000 0.0000 
0.025 0.022 0.023 0.0004 0.0003 0.0004 0.0000 0.0000 0.0000 

-0.031 -0 .025 -0 .024  -0 .0007 -0 .0005 -0 .0006 -O.OOO0 -O.OOO0 -0 .0000 
0.013 0.011 0.012 0.0001 0.0001 0.0001 O.OOO0 0.0000 0.0000 
0.001 0.001 O.OOO 0.0000 0.0000 0.0000 0.0000 O.OOOO 0.0000 

B e c a u s e  of  t h e  s y m m e t r y  o f  ha hb, we a s s u m e  i t  g i v e n  b y  t h e  a v e r a g e  o f  ~hese  t w o  

e x p r e s s i o n s ,  i.e. as �89 c 1 (ha ha 5- hb hb) 5- �89 c~ (ab hb -- ha aa). H o w e v e r ,  s ince  we 

sha l l  u l t i m a t e l y  d e t e r m i n e  Cl a n d  c,  b y  c o r r e s p o n d e n c e  w i t h  v a r i o u s  i n t e g r a l s ,  

we m a y  r ede f ine  t h e m  t o  a b s o r b  t h e  c o n s t a n t  f a c t o r s  �89 T h e  a b o v e  a r g u m e n t s ,  

a n d  c o r r e s p o n d i n g  r e a s o n i n g  fo r  o t h e r  c h a r g e  d i s t r i b u t i o n s ,  l e a d  t o  t h e  f o r m u l a s  
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T~ble 2. Exact and approximate integrals involving asymmetric two.center charge distributions 

R = 2; 6z~ = ($z~ = 2.00 .R = 2; $~ = 6~ = 1.67 

integral this Mull. this ~full. 
exact work ~ppr exact work appr 

hybrid 
[h~ h~ h, s0] 
[h~ a~ h~ so] 

[a~ ~ ~" h~] 

exchange 
[h~ h~ h, sb] 
[s~ s~ h~s~] 

[h~s~ h~ ab] 

0.275 0.278 0.27i 0.3~_0 0,311 0.308 
0.053 0.053 0.030 0.050 0,050 0.032 
0.286 0.290 0.283 0.304 0.303 0.297 

-0.293 -0.292 -0.224 -0.314 -0.313 -0.249 
0.216 0.215 0.224 0.231 0.231 0.239 

-0.048 -0.048 -0.026 -0.038 -0.038 -0.027 
0.087 0.087 0.021 0.091 0.091 0.027 

-0.289 -0.289 -0.220 -0.312 -0.312 -0.245 
0.206 0.207 0.215 0.220 0.222 0.229 
0.033 0.035 0.000 0.042 0.043 0.000 
0.044 0.039 0.000 0.054 0.046 0.000 
0.010 0.007 0.000 0.011 0.008 0.000 
0.0t3 0.007 0.000 0.014 0.008 0.000 

0A70 0A72 0A6i 0A86 0A85 0A77 
0A50 0A51 0A33 0A90 0A89 0A73 

-0A51 -0A50 -0A23 -0.182 -0A82 -0A51 
-0A36 -0A37 -0.096 -0AI9 -0AI9  -0.074 
-0A35 -0A36 - 0 A ~ _ 0  -0.170 -0A70 -0.t42 

0.154 0A53 0.103 0A86 0A85 0A26 
-0.116 -0A15 -0.084 -0.140 -0A39 -0A~I5 

0.022 0.0t 7 0.000 0.029 0.023 0.000 
0.021 0,017 0.000 0.026 0.021 0.000 

ha ho ~ cl (ha ha + ho ho) + c2 (ao ho - ha aa) 
sa so ~ c3 (sa ha § ho so) § ca (ao sb - sa aa) 

aa ao ~ c5 (ho ~o - aa ha) + ce (aa aa § (to (rb) 

z a  ~o ~ c7 (za :~a § 7~o x~o) 
! 

7la 7~ b ,~ C 7 (Tta 7I a § 7~b ~;)  . 

(i) 

For  asymmetr ica l  charge dis t r ibut ions we regard the relat ive weighting of the 
expansions abou t  A and  B as variable,  and  to be reflected in  the values of the 
expansion coefficients. The expansion formulas for these charge dis t r ibut ions  are 

thus  t aken  as 

ha so "~ cl ho sb + c2 ao sb + ca ha ha - c4 ha aa 

ha ao ~ cl ho ao + v2 ao ao - c5 ha ha + cs ha aa 
sa ao ~ ca ho ao § ca ao ao - % sa ha + ce sa aa (2) 

ha ~o "~ vl ho z~b § c2 ab ~o § c7 ha ~a 

8a Ylb ~ C a hb ~b § C4 ffb ~O § C7 8a Y~a 

(Ta ~b ~ C5 hb ~ZO § V6 fib ~ZO § C7 (ra 7~a �9 

Eqs. (l) and  (2) permi t  the approximate  simplification of all electron repulsion 
integrals  in to  l inear  combinat ions  of one-center  integrals  and  two-center  integrals  
of Coulomb type.  
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"Mull. alopr ' ' indicates the Mulliken approximation as in Eq. (10). Units of R are bohrs; 
integrals are in har~rees. 

t2 = 3; ~ ,  = ~2p = 1.67 R = 5; 5~ = ~ = 1.67 R = 8; 6~ = 6~ = 1.67 

this Mull. this Mull. this Mull. 
exact work appr exact work appr exact work appr 

0.149 0.t51 0A53 0.0235 0.0232 0.0299 0.0010 0.0009 0.0020 
0.029 0.029 0.013 0.0048 0.0047 0.0012 0.0002 0 . 0 0 0 1  0.0000 
0.145 0.147 0A49 0.0229 0.0226 0.0293 0.0010 0.0008 0.0019 

-0.177 -0.175 -0.149 -0.0310 -0.0304 -0.0331 -0.0014 -0.0014 -0.0023 
0.137 0.136 0.144 0.0298 0.0294 0.0326 0.0020 0.0020 0.0023 

-0.035 -0.035 -0.015 -0.0070 -0.0069 -0.0016 -0.0002 -0.0002 -0.0000 
0.048 0.047 0.012 0.0089 0.0088 0.0014 0.0005 0.0005 0.0000 

-0.172 -0.172 -0.147 -0.0301 -0.0301 -0.0329 -0.0014 -0.0014 -0.0023 
0.131 0 . 1 3 1  0.138 0.0287 0.0284 0.0314 0.0019 0.0019 0.0022 
0.014 0.015 0.000 0.0010 0.0012 0.0000 0.0000 0.0000 0.0000 
0.021 0.020 0.000 0.0019 0.0028 0.0000 0.0000 0 . 0 0 0 1  0.0000 
0.006 0.004 0.000 0.001t 0.0012 0.0000 0 . 0 0 0 1  0 . 0 0 0 1  0.0000 
0.006 0.003 0.000 0.0005 0 . 0 0 0 1  0.0000 0.0000 0.0000 0.0000 

0.056 0.055 0.053 0.0029 0.0025 0.0029 0.0000 0.0000 0.0000 
0.052 0 . 0 5 1  0.045 0.0017 0.0014 0.0015 0.0000 0.0000 0.0000 

-0.060 -0.058 -0.047 -0.0017 -0.0014 -0.0014 -0.0000 -0.0000 -0.0000 
-0.066 -0.065 -0.049 -0.0032 -0.0027 -0.0027 -0.0000 -0.0000 -0.0000 
-0.057 -0.056 -0.048 -0.0028 -0.0023 -0.0024 -0.0000 -0.0000 -0.0000 

0.070 0.068 0 . 0 5 1  0.0029 0.0024 0.0023 0.0000 0.0000 0.0000 
-0.061 -0.059 -0.046 -0.0034 -0.0028 -0.0027 -0.0000 -0.0000 -0.0000 

0.006 0.005 0.000 0 . 0 0 0 1  0.0002 0.0000 0.0000 0.0000 0.0000 
0.006 0.004 0.000 0.0002 0 . 0 0 0 1  0.0000 0.0000 0.0000 0.0000 

Now, we regard the expansion formulas given in  Eqs. (i) and  (2) as forms to 
be fit ted to various integrals,  and  accordingly we seek op t imum values of the 

coefficients c~. Since the enti t ies we a t t emp t  to describe are the charge distr ibu- 
t ions themselves,  and  not  the orbitals, we reserve the freedom to assign different 
values to the same ct in  different charge dis tr ibut ions.  After  some pre l iminary  
invest igat ion,  we found t h a t  the symmetr ica l  charge d is t r ibut ions  could be con- 
ven ien t ly  characterized by  requir ing them to yield correct results for cer ta in  
hybr id  integrals. The hybr id  integrals  are a good choice because they  can be used 
to control  the d is t r ibut ion  of weight among the different te rms of the expansions.  
For  example,  with the aid of Eq. (i) the hybr id  integral  [ha ha I ha hs] is ap- 
p rox imated  as 

[ha ha [ ha cl ([ha ha [ ha hal + [ha ha I + [ha ha I (3) 

~ot ice  t ha t  one of the terms of the expansio~ of ha hb drops from Ec 1. (3) for 
s y m m e t r y  reasons, and  tha t ,  of the remain ing  terms, those involving c 1 are more 
impor tan t ,  as they  include a one-center  in tegral  and  a two-center  in tegral  of 
charge-charge type, whereas the c 2 t e rm consists only of a two-center  in tegra l  of 
charge-dipole type. 
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We look next  at  the hybrid integral [ha fa ] ha h0], whose approximation is 

[ha f~ ! ha hb] ~ ~1 [ha fa [ hb h0] + c2 ([ha ~a ! fb hb] -- [ha ~ [ ha ~a])- (4) 

Because of the difference in symmetry  of ha ha and ha fa, we see tha t  the most 
important  terms in Eq. (4) involve c2 rather  than c r Because Eqs. (3) and (4) 
depend rather differently upon c I and c~, they are susceptible to computationally 
satisfactory simultaneous solution for these coefficients. We have found tha t  the 
aprtieular hybrid integrals used in determining c~ and co are not important, pro- 
viding their one-center charge distributions are of different symmetries. 

Reasoning similar to that just outlined was used to characterize the other 
symmetrical two-center charge distributions. In particular, we determine c a and c 4 
in the expansion of Sasb from 

[ha ha 18a ~b] ~ c~ ([ha he ] ~a h.] + [ha ha I hb 8b]) + e~ [he ha I fb ~o] (5) 

[ha fa  I 8a 8b] ~-~ C a [~ba ffa J hb 8b] -[- 6t ([~a fa  ! (Yb 8hi -- [ha ffa I 8a (:ra] ) " (6) 

For aa fib, we obtain e~ and c 6 from 

[ ha ha t (:ra fb ]  ~" (7"5 [ha ha ] hb fb] -t- c a ([ha ha { fa (:ra] -~- [ha ha I (Yb frb] ) (7) 

[ha "a I f "  oh] ~ c~ ([ha ,~. I hb fb] -- [ha (ra I fa  ha]) + ~ [~a ~a i fb ~b]. (S) 

The single coefficient c7 appearing in ~ra ~0 and ~a ~ is determined from 

[ha ~a [7~aTlb] ~ 6 7 ([~a ha I~a ~a]-~- [ha ha lTtb 7gb]) �9 (9) 

To test the approximations just outlined, we made calculations of exact and 
approximate two-center integrals of exchange and hybrid type. The exact integrals 
were obtained by  methods previously reported by  one of us [3]. Along ~Sth the 
new approximation we also tabulate  the Mulliken approximation, which we 
applied in the form 

[oo ~b I ~a Z~] ~ & (Oa I Vb) (~o I Zo) ([Oa Oa ] ~a r + [Oa Oa I Zb Zo] + 
+ [~0 w01 ~o ~a] + [~b ~b I z0 zb]) .  (10) 

Results of these calculations are given in Tab. I for various A -- B distances R 
and Slater parameters  6. In  all cases 61s = l ; 32s and ~ p  are as listed. The "exac t"  
results and all input  to the approximate calculations were obtained to six decimal 
places; the table values were rounded for convenience in presentation. I t  is seen 
tha t  a relatively good fit is obtained for all integrals under consideration, including 
those for which the Mullikcn approximation is not very satisfactory. The integrals 
subject to the largest errors are those involving charge distribution ~a ;rb (or 
~ra ~ ) ,  which is described in the present approximation by its leading te rm alone. 
A logical step towards improving the expansion of ~a erb would be to add the 
next symmetry  orbital, which is of atomic symmetry  dzr. As the lowest d~ orbital 
is of principal quantum number  3, we did not add it at  this tinle. 

Proceeding now to the asymmetric charge distributions, at  least two obvious 
courses of action are available. The simpler alternative is to use the coefficienr c~ 
obtained for the symmetrical  distributions to complete the specification of the 
expansions given in Eq. (2). This approach proves adequate for ha sb, and is 
marginally satisfactory for ha ~b, sa Zrb, and r erb. However, i t  is entirely un- 
satisfactory for ha f b  and aa ab. A far better  approximation to charge distribu- 
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tions of tnixed symmetry is afforded by directly fi~ting the expansions of Eq. (2) 
to appropriate sets of hybrid integrals. For example, the coefficients in ha (~ 
can be determined from the four simultaneous ec uations 

ab ab] + % [ha Ga [ ha aa], (12) 

ha ha] § cG [hb hb I ha an], (t3) 

ha ha] -t- c6 [hb ab I ha (~a] �9 (t4) 

While similar equations could be applied in principle to products of orbitals of 
the same symmetry, such as ha sb, they might in some eases generate near linear 
dependences and be numerically unsatisfactory. 

We used the procedure exemplified by Eqs. (11) to (14) for ha ab and Sa cry, 
and evaluated ha s~, ha 7cb, Sa ~b, and aa z~ using the coefficients for the sym- 
metrical charge distributions. This leads to the results given in part  in Tab. 2. 
We actually examined every two-center hybrid and exchange integrM for the R 
and 8 values listed, and the integrals chosen for tabulation are entirely represen- 
tative. Again we obtain a relatively good fit for all integrals, with poorest results 
for those involving x orbitals, probably for the reasons suggested in the discussion 
of the symmetrical charge distributions. 

Discussion 

The results given in the preceding section indicate that  with but  few excep- 
tions, all the two-center integrals which arise in normal molecular calculations are 
estimated with accuracies of the order of i kcal ( ~ 0.00i6 FIartree) or better. 
This accuracy seems to us to be sufficient to constitute a significant potential 
improvement over the methods currently in widest use. Although the results thus 
far obtained are entirely for two-center integrals, we are optimistic that  they can 
be extended to three- and four-center integrals as well, because the same ap- 
proximate charge distribution appears to work well in a variety of integrals whose 
main contributions arise in different spatial regions. With the aid of the exact 
multi-center integral methods of H ~ R I s  and MIt tEns [4 to 6], the present authors 
hope to obtain information bearing on this hypothesis. 

An important  practical matter  with respect to the methods here described is 
the ease and convel~ience with which they can be applied. To calculate the entire 
set of electron repulsion integrals for a molecule, we need the full set of Coulomb 
integrals involving the various orbital centers, plus a few hybrid integrals. For an 
n-center problem, this will involve integrals on n (n - t)/2 pairs of centers. This 
situation is far more favorable than that  arising from midpoint- or arbitrarily 
centered orbitals as there would then be of the order of n ~ expansion centers and 
of the order of n a pairs of centers for which Coulomb integrals would be needed. 

To obtain some idea of possible integral evaluation times in the present ap- 
proximation, let us examine a calculation in which we require all distinct Coulomb 
integrals for principal quantum numbers t and 2 for all combinations of n centers. 
Using our current programs for IBM-7094-type equipment, this would require 
roughly 0.3 n 2 sec. The necessary hybrid integrals would take about 0.4 n 2 see. 
Formation of general electron repulsion integrals would then require approximately 

6 Theoret. chtm. Acta (Berl.) Vol. 6 
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0.2 msec each. I f  the re  are four  orbi ta ls  pe r  center  we would  need nea r ly  32 n 4 
in tegra ls  no t  of  one-center  or Coulomb type ,  t oge the r  requi r ing  abou t  0.007 n a see. 
F o r  a s ix-center  p rob lem these  t imes  add  up  to  a b o u t  33 see; for a 12-center 
p rob lem,  to  a b o u t  245 see. The l a t t e r  p rob lem is large enough t h a t  the  final 
in tegra l  fo rma t ion  has  become the  mos t  t ime-consuming  step.  The t imes  quo ted  
are  smal l  enough t h a t  i t  appears  p rac t i ca l  to  a t t e m p t  to  re ta in  all  in tegra ls  in 
p rob lems  of  m o d e r a t e  size. 
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