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The electron repulsion integrals arising in LCAO-MO theory are approximated by replace-
ment of the product of two orbitals on different centers by linear combinations of one-center
products. The approximation differs from those previously proposed in that the coefficients
of the various terms are determined by requiring agreement for certain integrals, and in the
emphasis of the role of symmetry in selecting the one-center products. For two-center integrals,
the new approximation is significantly better than older approximate methods. Reasons are
given for expecting this improvement to extend also to multi-center integrals.

Es wird ein Verfahren zur niherungsweisen Berechnung von Elektronenwechselwirkungs-
integralen der LCAO-MO-Theorie beschrieben, bei welchem das Produkt zweier Zustands-
funktionen an verschiedenen Zentren durch eine Linearkombination von Produkten am
gleichen Zentrum ersetzt wird. Der Unterschied zu dhnlichen Ansitzen liegt in der Justierung
der Koeffizienten. Fiir Zweizentrenintegrale liefert die hier vorgeschlagene Methode bedeutend
bessere Ergebnisse als das Mulliken-Verfahren.

Les intégrales de répulsion électroniques intervenant dans la théorie LCAO MO sont
calculées d'une maniére approchée en remplacant le produit de deux orbitales sur des centres
différents par des combinaisons linéaires de produits & un centre. Cette approximation différe
de celles proposées auparavant par la détermination des coefficients des différents termes au
moyen de Pajustement de certaines intégrales et par I'importance du réle de la symétrie dans
le choix des produits monocentriques. Cette nouvelle approximation est bien meilleure que les
anciennes en ce qui concerne les intégrales bi-centriques. Nous donnons des raisons d’espérer
que cette amélioration s’étendra aux intégrales polycentriques.

Introduction

The theory of molecular orbitals formed by linear combination of atomic
orbitals (LCAO-MO theory) has enjoyed a considerable success in correlating pro-
perties of many medium-sized molecules, particularly when used within groups of
fairly similar systems such as the alternant hydrocarbons. On the other hand,
when LCAO-MO theory is applied to systems possessing less similarities, for
example organic molecules containing hetero atoms, far less satisfactory results
are obtained. Undoubtedly, this behavior is due to the fact that the approxima-
tions of the theory have a more consistent effect when applied in closely corres-
ponding circumstances. However, the large number of relatively drastic mathe-
matical approximations normally introduced make it by no means clear whether
the difficulties are inherent in the LCAO molecular orbital theory or whether they
can be removed by purely mathematical refinements. The present paper seeks to
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investigate this question by examining the practicality of a set of approximations
alternative to those which have received widest study.

The mathematical approximations of molecular orbital theory arise because an
extremely large number of molecular integrals enter the calculations, and these
integrals have proved difficult to evaluate. There have been two main approaches
to this problem, the simpler being exemplified by the Hiickel theory [8] and its
extensions [7]. This approach avoids explicit consideration of the antisymmetry
conditions, and approximates the electron-electron and electron-nuclear inter-
actions by simple empirical forms. It is doubtful whether this approach is suffi-
ciently detailed to yield good results in the most general situations.

The second approach has been to use a properly antisymmetrized electronic
wave function, but to limit the size of the problem in other ways. A normal
procedure is to partition the electrons into two groups, only one of which is
explicitly considered [11, 12]. The explicitly considered electrons are normally
chosen from those involved in chemical bonding. Often, as in the usual & electron
theory [15, 161, not even all of the valence electrons are included. The remaining
electrons and the nuclei are together congidered as a “core” whose interaction with
the explicitly considered electrons is estimated semi-empirically. A partitioning
therefore reduces drastically the number of molecular integrals to be evaluated,
as the only integrals remaining are those involving the explicitly included electrons.
Normally, still further approximations are introduced in the evaluation of the
integrals which remain, by the use of simplified numerical formulas or semi-
empirical methods. Frequently integrals involving three or four centers are neg-
lected, as are sometimes also the two-center integrals of hybrid or exchange type.

The approximations outlined in the preceding paragraph could be nearly
entirely removed if the integrals could be evaluated much more rapidly. We
accordingly consider an alternative approach to LCAO molecular orbital theory
in which we introduce an integral approximation that is simple enough to enable
explicit inclusion of nearly all electrons. Such an integral approximation should,
optimally, have sufficient accuracy that errors thereby introduced would be com-
parable to those inherent in the LCAO-MO theory itself. Moreover, the inclusion
of all integrals should produce a molecular orbital theory which could have the
capability of yielding information on molecular geometries, ¢ — 7 transitions, and
other quantities which it is difficult to discuss in the presence of a ‘“‘core” ap-
proximation.

The integral approximation methods which have thus far proved to be useful
all depend upon the replacement of a two-center charge distribution by one or
more suitably chosen single-center distributions. In the method of SkrLa®r [18],
a two-center orbital product is replaced by a product of two similar orbitals at
the midpoint of the line segment connecting the centers. VRorLANT [19] has
modified SKLAR’s approximation for asymmetric charge distributions by optimally
locating the single-center orbital product. Alternatively, Masox and Hirscu-
FELDER [13] examined more elaborate expressions and multipole expansions about
the midpoint. MuLLIKEN [14] introduced the approximation of a two-center orbital
product by a simple average of two single-center distributions located at the two
centers involved. LOwpIx [10] proposed that the Mulliken approximation be modi-
fied by weighting the relative contributions of the single-center distributions



Integral Approximations for MO Theory 5

s0 as to give the approximate charge distribution the correct dipole moment.
HuzinacA [9] suggested a combination of the Mulliken and Sklar approximations
in which a simple average is taken of single-center charge distributions at both
centers and at the midpoint of the line segment connecting them. These integral
approximation methods can all be construed as involving leading terms in infinite
series expansions of a two-center charge density. This point of view was explicitly
developed. for the Mulliken approximation by RUEDENBERG [17], who showed that
such arguments could be used to justify the appearance of the overlap integral as
coefficient. Recently, Ci¥ex [1, 2] critically compared the various integral ap-
proximation methods and took the next logical step toward an improved method.
Cizex’s procedure was to represent a two-center charge distribution as a linear
combination of two single-center distributions, assigning both their locations and
their relative weights 8o as to make the lowest order multipole moments correct.
In this way he was able to achieve agreement through the octupole moment.

In the present paper we examine an integral approximation which, in common
with those discussed above, is based upon the representation of a two-center
charge distribution as a truncated expansion in one-center distributions. However,
in contrast to the earlier approaches, the coefficients of the various one-center
terms will be determined by requiring the approximate charge distributions to
yield correct values for certain integrals. This criterion results in the assignment
of coefficients which are more nearly optimum for the purposes for which they are
to be used, with the result that relatively good integral values are obtained. In
selecting terms for the truncated expansions, it is found that symmetry is con-
siderably more important than detailed functional form, as errors in form are
largely compensated by the procedure for determining the coefficients, whereas
terms of different symmetry behave qualitatively too differently to compensate
each other. Accordingly, we consider expansions involving the leading terms of the
most important symmetries. The results presented here are limited to two-center
electron repulsion integrals, and to orbitals of principal quantum numbers 1 and 2.
Further study to remove these limitations is in progress.

Integral Approximation

We consider Slater-type orbitals centered at the two points 4 and B. We use
parallel axial systems for the two centers, with the positive z axis of both systems
along the ray from A through B. We use normalized 1s, 2s, and 2p orbitals of
complex type, denoting 1s orbitals at 4 and B by &, and hp, 2s orbitals by s, and sy,
2p orbitals with m = 0 by o, and op, 2p orbitals with m = -+ 1 by 7, and np,
and 2p orbitals with m = — 1 by a, and ;. Electron repulsion integrals are
indicated in charge distribution notation, so that, for example, [%,4 sp ] 0p 0p] means
PR (ry) so (1) [ 13—~ 71 |7 05 (1) 05 () dov, do,.

Our basic premise is that each orbital about one center can be expanded in a
series about the other center using at most one term of each atomic symmetry.
For simplicity, we use the 1s orbital as the term of s symmetry, and for p symmetry
we use the three 2p orbitals. Thus,

ho~ ¢ by 4 ca0p;  ho~ ¢ ha — Cy005  Sam~ €3hp + €4 00;
$o~ Cgha — 6,003 Oum Csho+ cg0p;  Ob~ — 05 ha + 06 a3
T & Cqp; o~ Cqlla; Ty N Cpfy; Ty & Cq Ty
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Table 1. Exact and approximate integrals involving symmetrical two-center charge distributions

B = 2; das = 02p = 2.00 R =2; 0as = J2p = 1.67
integral this Mull. : this Mull.

exact work appr exact work appr
hybrid
[ha ba | ha Bo] 0.308 0.308% 0.308 0.308 0.308* 0.308
[a ba | 80 85] 0.265 0.265* 0.254 0.312 0.312* 0.299
[0 ha | 0a 0] —0.221 ~0.221% —-0.183 -0.177 —-0.477* -0.128
[ha ba | 776 700] 0.156 0.156* 0.158 0.203 0.203* 0.205
[a Sa | Fa Fo] 0.310 0.310 0.310 0.302 0.301 0.301
[fa 8a | 8a 8] 0.269 0.268 0.257 0.307 0.306 0.294
[fra 8o | 0a 0] —0.226 —-0.225 —0.185 ~0.174 -0.173 ~0.125
[Pa Sa | 7 7ts] 0.157 0.157 0.159 0.200 0.199 0.201
[a 0a | ha Fs] 0.045 0.045%* 0.031 0.046 0.046%* 0.032
[#a 0a | 82 80 ] 0.051 0.051* 0.027 0.052 0.052* 0.032
[fa 6o | 0a 0b] —0.089 -0.089* —-0.021 —-0.081 —0.081%* -0.014
[fe Ga | 7ta 73] 0.028 0.016 0.016 0.033 0.021 0.022
[Sa 8a | e hv] 0.327 0.328 0.327 0.307 0.305 0.305
[8a 8a | 8a S0 0.284 0.284 0.271 0.312 0.311 0.299
[8a 82 | 0a 0] —-0.240 -0.240 —-0.196 -0.477 -0.176 -0.127
[$a Sa | e 73] 0.166 0.166 0.168 0.204 0.203 0.205
[S2 Ga | ha Ps] 0.047 0.047 0.032 0.048 0.048 0.034
[8a Oa | sa 8b] 0.055 0.055 0.028 0.054 0.054 0.033
[se Oa | Ga 0] —-0.097 —0.097 -0.022 —0.084 —0.084 -0.014
[8e 0a | 720 0] 0.030 0.017 0.017 0.035 0.022 0.023
[0a Oa | ha o] 0.336 0.338 0.336 0.317 0.316 0.316
[0a 04 | 80 s3] 0.296 0.294 0.280 0.322 0.322 0.308
[0e 02 | 0a 0] —0.264 —-0.260 -0.212 -0.193 —-0.188 —0.137
[Ga 0o | 720 73] 0.168 0.167 0.169 0.205 0.205 0.207
[7¥a 7a | ha Fo] 0.323 0.323 0.322 0.302 0.300 0.300
[a 70 | 80 s8] 0.279 0.279 0.267 0.307 0.306 0.294
[77a 7ta | 6a 0] —-0.228 —-0.230 —-0.188 ~0.168 -0.170 -0.122
[70a 7ta | 720 775) 0.165 0.165 0.167 0.203 0.202 0.204
[7e 725 | 71a 727, 0.014 0.014 0.000 0.019 0.017 0.000
exchange
[Pa bo | ha o] 0.184 0.183 0.181 0.184 0.183 0.181
[sa 8o | ha Po] 0.160 0.160 0.149 0.188 0.187 0.175
[Sa 8v | 8a s8] 0.143 0.142 0.124 0.193 0.191 0171
[Ga 00 | ha hp] —0.141 -0.141 -0.107 -0.116 -0.116 -0.075
[0a b | 82 s5] -0.134 -0.133 —0.089 ~-0.123 -0.123 -0.073
[0a 0b | 0a 00] 0.157 0.153 0.068 0.121 0.118 0.033
[7ta 20 | ha Pov] 0.095 0.091 0.092 0.123 0.119 0.120
[7ta 7o | 80 85] 0.083 0.079 0.077 0.126 0.121 0.117
[7ta 720 | 00 00} —-0.075 -0.065 —-0.054 —-0.077 —0.068 —-0.049
[sta 7y | 700 720} 0.050 0.047 0.048 0.085 0.080 0.081
[7a 755 | 720 725} 0.006 0.004 0.000 0.009 0.007 0.000

The coefficients in these expressions are to be determined individually for each
charge distribution.

We begin by considering symmetrical charge distributions. By direct sub-
stitution of the relationships in the preceding paragraph, we find for example that
ha hp can be represented as ¢, hip hp + ¢4 0 hp, OF equivalently as ¢, kg by — €3 kg g
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Asterisks indicate integrals used to determine our approximation formulas. “Mull. appr” indic-
ates the Mulliken approximation as in Eq. (10). Units of R are bohrs; integrals are in hartrees.

R = 3; 0as = §2p = 1.67

R = 5; 625 = 621) =1.67

R = 8; 025 = 02p = 1.67

this Mall. this Mull. this Mull.
exact  work appr exact work appr exact work appr
0.161 0.161% 0465  0.0330  0.0350* 0.0398  0.0027  0.0027*  0.0027
0145  0.4145* 0.141 0.0187  0.0187* 0.0204  0.0004  0.0004*  0.0006
~0.170  -0470* —0.453 -0.0339 -0.0339* -0.0367 -0.0010 -0.0010* -0.0014
0.072  0.072* 00753  0.0061 0.0061*  0.0073  0.0001 0.0001*  0.0001
0.158 0457  0.161 0.0344  0.0340  0.0387  0.0027  0.0027 0.0037
0143 0442  0.138  0.0185  0.0183  0.0200  0.0004  0.0004 0.0006
-0.168 -0.168 ~0.150 —0.0335 -0.0332 -0.0359 -0.0010 -0.0010 -0.0014
0.071 0.070  0.074  0.0060  0.0059  0.0071 0.0001 0.0001 0.0001
0.027 0.027%  0.013  0.0060  0.0060* 0.0016  0.0004  0.0004*  0.0001
0.029  0.029% 0.012  0.0040  0.0040* 0.0009  0.0001 0.0001*  0.0000
-0.059 -0.059* —0.015 —0.0094 -0.0094* —0.0017 -0.0002 -0.0002* -0.0000
0.013  0.006  0.006  0.0011 0.0002  0.0003  0.0000  0.0000 0.0000
0.161 0160  0.163  0.0350  0.0344  0.0392  0.0027  0.0027 0.0037
0.146 0144  0.140  0.0188  0.0185  0.0203  0.0005  0.0004 0.0006
-0.172 0471 -0.152 -0.0342 -0.0337 -0.0365 —0.0010 -0.0010 —0.0014
0.072  0.071 0.075  0.0061 0.0060  0.0072  0.0001 0.0001 0.0001
0.028  0.028  0.014  0.0063  0.0062  0.0017  0.0005  0.0005 0.0001
0.031 0.031 0.012  0.0042  0.0042  0.0009  0.0001 0.0001 0.0000
-0.061 ~0.061 ~-0.015 -0.0098 —0.0097 -0.0017 -0.0002 -0.0002 —0.0000
0.014  0.006  0.006  0.0012  0.0002  0.0003  0.0000  0.0000 0.0000
0.167 0164 0467  0.0363  0.0349  0.0396  0.0028  0.0027 0.0038
0.153 0.150 0444  0.0199  0.0188  0.0205  0.0005  0.0004 0.0006
-0.189 -~0.487 -0.1656 -0.0371 -0.0362 -0.0390 -0.0011 -0.0011 —0.0015
0.07¢  0.07M1 0.075  0.0063  0.0059  0.0071 0.06001 0.0001 0.0001
0.158 0456  0.160  0.0344  0.0342  0.0390  0.0027  0.0027 0.0037
0142 0442 0438  0.0183  0.0184  0.0202  0.0004  0.0004 0.0006
-0.163 ~0.163 -0.146 -0.0327 -0.0325 -0.0352 -0.0010 -0.00t0 —0.0013
0.072 0.071 0.075  0.0060  0.0061 0.0073  0.0001 0.0001 0.0001
0.005  0.006  0.000  0.0003  0.0005  0.0000  0.0000  0.0000 0.0000
0.059  0.057  0.057  0.0037  0.0033  0.0038  0.0000  0.0000 0.0000
0.054  0.063  0.040  0.0021 0.0018  0.0020  0.0000  0.0000 0.0000
0.050  0.049 0.042  0.0012  0.0010  0.0010  0.0000  0.0000 0.0000
—-0.068 -0.066 -0.053 -0.0041 -0.003¢ —0.0035 -0.0000 -0.0000 ~0.0000
—-0.065 ~0.063 -0.046 -0.0024 -0.0019 -0.0018 -0.0000 -0.0000 -0.0000
0.095  0.091 0.053  0.0049  0.0039  0.0035  0.0000  0.0000 0.0000
0.027  0.02¢  0.026  0.0007  0.0005  0.0007  0.0000  0.0000 0.0000
0.025  0.022  0.023  0.0004 0.0003  0.0004  0.0000  0.0000 0.0000
-0.031 -0.025 -0.024 -0.0007 -0.0005 -0.0006 -0.0000 -0.0000 —0.0000
0.013  0.011 0.012  0.0001 0.0001 0.0001 0.0000  0.0000 0.0000
0.001 0.001 0.000  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000

Because of the symmetry of 2, hp, we assume it given by the average of these two
expressions, Le. as ¥ ¢, (hg hg + ho hp) + % ¢, (00 by — hg 04). However, since we
shall ultimately determine ¢, and ¢, by correspondence with various integrals,
we may redefine them to absorb the constant factors §. The above arguments,
and corresponding reasoning for other charge distributions, lead to the formulas
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Table 2. Exact and approximate integrals involving asymmetric two-center charge distributions

B = 2; 035 = 020 = 2.00

B = 2; 025 = d2p = 1.67

integral this Mull. this Mull.
exact work appr exact work appr
hybrid
[fa ha | Ba s6] 0.275 0.278 0.271 0.310 0.311 0.308
[ha 0u | Ba 851 0.053 0.053 0.030 0.050 0.050 0.032
[72a 7a | Ba s0] 0.286 0.290 0.283 0.304 0.303 0.297
[$a 8a | 2a o8] -0.293 —0.292 -0.224 -0.314 -0.313 —0.249
[$a Sa | 0a ho] 0.216 0.215 0.224 0.231 0.231 0.239
[sa Oa | ba 03] -0.048 —0.048 -0.026 -0.038 -~0.038 -0.027
[$a 0a | 0a Bs] 0.087 0.087 0.021 0.091 0.091 0.027
[7%a 7a | Pa O3] -0.289 —0.289 -0.220 -0.312 -0.312 ~0.245
[7ta 7a | Ga Bo] 0.206 0.207 0.215 0.220 0.222 0.229
[ha 7ta | Sa 785] 0.033 0.035 0.000 0.042 0.043 0.000
[ha 7ta | 705 851 0.044 0.039 0.000 0.054 0.046 0.000
[6a a | 7o Bo) 0.010 0.007 0.000 0.011 0.008 0.000
[0a 7a | Pa 73] 0.013 0.007 0.000 0.014 0.008 0.000
exchange
[ka o | Ba 8] 0.170 0.172 0.161 0.186 0.185 0.177
[8c 8o | Ba 5] 0.150 0.151 0.133 0.190 0.189 0.173
[8a 85 | Sa O3] -0.151 -0.150 -0.123 -0.182 -0.182 -0.151
[0a 05 | Sa hv] -0.136 -0.137 —0.096 -0.119 -0.119 -0.074
[ha s5 | Ba 00] -0.135 . -0.136 -0.110 -0.170 ~0.170 -0.142
[Aa 05 | Sa 0b] 0.154 0.153 0.103 0.186 0.185 0.126
[ha 06 | 0a S0 ] -0.116 -0.4115 —0.084 -0.140 -0.139 -0.115
[ha 720 | Sa 715] 0.022 0.017 0.000 0.029 0.023 0.000
[ha 7o | 74 851 0.021 0.017 0.000 0.026 0.021 0.000
p R 61 (ha, h“ —l— h/b hb) “I’“ 02 (O'b kb — ha Ga)
0 Sp ~ Cg (S ha + hp sp) + ¢4 (0b 8 — Sa 0a)

zra Gy & Cy (hp 0b — Og hg) + €4 (04 04 + 0p 0b) 1

g ﬂb Cy (720 00 + 7o 7p)

T nb ~ Cq (7g ﬂ; -+ 7 7'61',) .

For asymmetrical charge distributions we regard the relative weighting of the
expansions about 4 and B as variable, and to be reflected in the values of the
expansion coefficients. The expansion formulas for these charge distributions are

thus taken as

ha 8o &~ ¢y by sp + 63 Gp Sp + €3 by By — €4 b 04
ha O & C; hp 6p + 65 0p G — C5 hg by + €5 Py Oy
Sq Op & C3 by Op + €4 6p Gp — €5 Sq g + € S Og
by 7ty &~ €1 by 7T+ €5 Ob 7y + 7 By 714
Sq Ty & Cg hy o + €4 O 7Ty -+ Cq Sy 7Ty
Oa Ttp = Cg hp 7wy + Cq Oy 7Ty + €7 Og Tq, -

@)

Egs. (1) and (2) permit the approximate simplification of all electron repulsion
integrals into linear combinations of one-center integrals and two-center integrals
of Coulomb type.
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“Mull. appr” indicates the Mulliken approximation as in Eq. (10). Units of R are bohrs;
integrals are in hartrees.

R = 3; 825 = 02p = 1.67 B = 5; 89 = 2p = 1.67 B = 8; das = J2p = 1.67
this Mull. this Mull. this Mull.
exact work appr exach work appr exact work appr

0.149 0.151 0.153 0.0235 0.0232 0.0299 0.0010 0.0009 0.0020
0.029 0.029 0.013 0.0048 0.0047 0.0012 0.0002 0.0001 0.0000
0.145 0.147 0.149 0.0229 0.0226 0.0293 0.6010 0.0008 0.0019
~0477 -0475 -0.149 -0.0310 -0.0304 -0.0331 -0.0014 -0.0014¢ -0.0023
0.137 0.136 0.144 0.0208 0.0294 0.0326 0.0020 0.0020 0.0023
-0.035 -0.035 -0.015 -0.0070 -0.0069 -0.0016 —0.0002 -0.0002 -0.0000
0.048 0.047 0.012 0.0089 0.0083 0.0014 0.0005 0.0005 0.0000
-0.172 -0472 -0447 -0.0301 -0.0301 -0.0329 -0.0014 -0.0014 -0.0023
0.131 0.131 0.138 0.0287 0.0284 0.0314 0.0019 0.0019 0.0022
0.014 0.015 0.000 0.0010 0.0012 0.0000 0.0000 0.0000 0.0000
0.021 0.020 0.000 0.0019 0.0028 0.0000 0.0000 0.0001 0.0000
0.006 0.004 0.000 0.0011 0.0012 0.0000 0.0001 0.0001 0.0000
0.006 0.003 0.000 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000

0.056 0.055 0.053 0.0029 0.0025 0.0029 0.0000 0.0060 0.0000
0.052 0.051 0.045 0.0017 0.0014 0.0015 0.0000 0.0000 0.0000
-0.060 -0.058 -0.047 -0.0017 -0.0014 -0.0014 -—0.0000 -0.0000 —0.0000
-0.066 -0.0656 -0.049 -0.0032 -0.0027 -0.0027 -0.0000 -0.0000 —0.0000
-0.057 -0.056 ~-0.048 -0.0028 -0.0023 -0.0024 -0.0000 -0.0000 —0.0000
0.070 0.068 0.051 0.0029 0.0024 0.0023 0.0000 0.0000 0.0000
-0.061 -0.059 -0.046 -0.003¢ -0.0028 -0.0027 -0.0000 -0.0000 ~-0.0000
0.006 0.005 0.000 0.0001 0.0002 0.0000 0.0000 0.0000 0.00C0
0.006 0.004 0.000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000

Now, we regard the expansion formulas given in Eqgs. (1) and (2) as forms to
be fitted to various integrals, and accordingly we seek optimum values of the
coefficients ¢;. Since the entities we attempt to describe are the charge distribu-
tions themselves, and not the orbitals, we reserve the freedom to assign different
values to the same ¢; in different charge distributions. After some preliminary
investigation, we found that the symmetrical charge distributions could be con-
veniently characterized by requiring them to yield correct results for certain
hybrid integrals. The hybrid integrals are a good choice because they can be used
to control the distribution of weight among the different terms of the expansions.
For example, with the aid of Eq. (1) the hybrid integral [hg kg | by hp] is ap-
proximated as

[hg, ka, l ha hb] - 01 ([ha ha, l hu h/a,] + [ka, ha ! hb kb] ) "I— 02 [ka ha, I Gb hb] (3)

Notice that one of the terms of the expansion of k, hp drops from Eq. (3) for
symmetry reasons, and that, of the remaining terms, those involving ¢, are more
important, as they include a one-center integral and a two-center integral of
charge-charge type, whereas the ¢, term consists only of a two-center integral of
charge-dipole type.
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We look next at the hybrid integral [A, o, ] hq hp], whose approximation is
[ku Ga I ha hb] 2~ cl [hq Ua, ' hb kb] + 02 ([ha (Ta ! Ub hb] - [hw Og I ka Ga] ) . (4:)

Because of the difference in symmetry of Ay kg and g 64, We see that the most
important terms in Eq. (4) involve ¢, rather than ¢,. Because Eqgs. (3) and (4)
depend rather differently upon ¢, and c¢,, they are susceptible to computationally
satisfactory simultaneous solution for these coefficients. We have found that the
aprticular hybrid integrals used in determining ¢, and ¢, are not important, pro-
viding their one-center charge distributions are of different symmetries.

Reasoning similar to that just outlined was used to characterize the other
symmetrical two-center charge distributions. In particular, we determine ¢; and ¢,
in the expansion of s4 85 from

[P g | Sa Sp] & €y ([ka ha I Sg hal + {ha b I by Sb]) + ¢y lhg By } Ob Sp) (5)
[ Ga | Sa Sb] ~ 65 [ha 0a | ho s6] + ¢4 ([ha 0a | 06 6] — [ha 0a | Sa0a]).  (6)
For o, o3, we obtain ¢; and ¢, from
[ha ha | 04 06] ~ 5 [ha ba | b 0] + ¢4 ([ha ba | 04 04] 4 g P | 01 60]) (M)
[k 64 | 64 06] ~ ¢5 ([ha 06 | b 06] — [ha 04 | 0a hal) + ¢4 [ha0a |ob 0] - (8)
The single coefficient ¢, appearing in 7g 7, and 7q 7; is determined from
[Pg Fra | T Tp] A Cq ([hw ha I Ttg ] + [Pa o | Ty 70p) ) . 9)

To test the approximations just outlined, we made calculations of exact and
approximate two-center integrals of exchange and hybrid type. The exact integrals
were obtained by methods previously reported by one of us [3]. Along with the
new approximation we also tabulate the Mulliken approximation, which we
applied in the form

(64 Yo | Qa Xb] ~ % (0a | o) (P IXb) ([ea Oa ] Pa Pal + (04 Oa 'Xb Kol -+
+ [ywo o | @a @al + [wowo | x5 x5]) - (10)

Results of these calculations are given in Tab. 1 for various 4 — B distances B
and Slater parameters §. In all cases d15 = 1; dos and dgp are as listed. The “exact”
results and all input to the approximate calculations were obtained to six decimal
places; the table values were rounded for convenience in presentation. It is seen
that a relatively good fit is obtained for all integrals under consideration, including
those for which the Mulliken approximation is not very satisfactory. The integrals
subject to the largest errors are those involving charge distribution s,y (or
7tg 7p), Which is deseribed in the present approximation by its leading term alone.
A logical step towards improving the expansion of 7, 7zp would be to add the
next symmetry orbital, which is of atomic symmetry dz. As the lowest dr orbital
is of principal quantum number 3, we did not add it at this time.

Proceeding now to the asymmetric charge distributions, at least two obvious
courses of action are available. The simpler alternative is to use the coefficients c;
obtained for the symmetrical distributions to complete the specification of the
expansions given in Eq. (2). This approach proves adequate for kg sp, and is
marginally satisfactory for hgmp, s57p, and g p. However, it is entirely un-
satisfactory for kg gp and s, op. A far better approximation to charge distribu-
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tions of mixed symmetry is afforded by directly fitting the expansions of Eq. (2)
to appropriate sets of hybrid integrals. For example, the coefficients in %, o3
can be determined from the four simultaneous equations

(ha ha l ho ob] ~ ¢y [ha Pa ’ hy op] + 05 [Pa he t 0 0p] — €5 [ha ha [ ha hal s (11)
(ko 0 | ha 006} & ¢y [ha 04 | o 061 + €4 [ha 0a | 00 05] + €4 [ha0a | o 0a],  (12)
Ui b | g 051 ~ ¢4 Tho B | 6 06] — 5 o Ty | B ) + 06 T B | B 0], (13)
[ho 0b | hy 00] & ¢y [ho 0b | By 6] — ¢5 [hy 06 | ha Bal + ¢4 Tho 0p | ha0a) - (14)

While similar equations could be applied in principle to products of orbitals of
the same symmetry, such as h, sp, they might in some cases generate near linear
dependences and be numerically unsatisfactory.

We used the procedure exemplified by Eqgs. (11) to (14) for k4 op and s o3,
and evaluated % sp, hq 7p, Sa7p, and oy 7y using the coefficients for the sym-
metrical charge distributions. This leads to the results given in part in Tab. 2.
We actually examined every two-center hybrid and exchange integral for the B
and ¢ values listed, and the integrals chosen for tabulation are entirely represen-
tative. Again we obtain a relatively good fit for all integrals, with poorest results
for those involving s orbitals, probably for the reasons suggested in the discussion
of the symmetrical charge distributions.

Discussion

The results given in the preceding section indicate that with but few excep-
tions, all the two-center integrals which arise in normal molecular calculations are
estimated with accuracies of the order of 1 keal (= 0.0016 Hartree) or better.
This accuracy seems to us to be sufficient to constitute a significant potential
improvement over the methods currently in widest use. Although the results thus
far obtained are entirvely for two-center integrals, we are optimistic that they can
be extended to three- and four-center integrals as well, because the same ap-
proximate charge distribution appears to work well in a variety of integrals whose
main contributions arise in different spatial regions. With the aid of the exact
multi-center integral methods of HarrIs and MicHELs [4 to 6], the present authors
hepe to obtain information bearing on this hypothesis.

An important practical matter with respect to the methods here described is
the ease and convenience with which they can be applied. To calculate the entire
set of electron repulsion integrals for a molecule, we need the full set of Coulomb
integrals involving the various orbital centers, plus a few hybrid integrals. For an
n-center problem, this will involve integrals on n (n — 1)/2 pairs of centers. This
situation is far more favorable than that arising from midpoint- or arbitrarily
centered orbitals as there would then be of the order of #n? expansion centers and
of the order of n? pairs of centers for which Coulomb integrals would be needed.

To obtain some idea of possible integral evaluation times in the present ap-
proximation, let us examine a calculation in which we require all distinet Coulomb
integrals for principal quantum numbers 1 and 2 for all combinations of % centers.
Using our current programs for IBM-7094-type equipment, this would require
roughly 0.3 n2 sec. The necessary hybrid integrals would take about 0.4 %2 sec.
Formation of general electron repulsion integrals would then require approximately
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0.2 msec each. If there are four orbitals per center we would need nearly 32 nt
integrals not of one-center or Coulomb type, together requiring about 0.007 #* sec.
For a six-center problem these times add up to about 33 sec; for a 12-center
problem, to about 245 sec. The latter problem is large enough that the final
integral formation has become the most time-consuming step. The times quoted
are small enough that it appears practical to attempt to retain all integrals in
problems of moderate size.
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